Cambrian Lagerstätten host rocks are frequently composed of kaolinite and chlorite in varying amounts; accordingly, our goal was to study the preservation potential of crustaceans in these two clays. We conducted long-term experiments (12–18 months, the longest duration of actualistic taphonomy experiments from published literature) on the decay of Artemia salina in these clay sediments. The degree of preservation, transformed mineralogical composition of the sediments, and the elemental composition of the nauplial remains were examined. We demonstrate that the kaolinite and chlorite sediment enhanced the preservation (in the kaolinite the effect was considerably higher than in the chlorite) compared with the sediment-free control. pH inside the sediments dropped to 6.5–7.1 and was even lower (<4) around the buried carcasses, facilitating the dissolution of clays. This phenomenon was confirmed by mineralogical analyses of the experimental sediments, which showed mineralogical signatures of such dissolution and new mineral phases. According to the variations in the dissolved minerals in the sediments, different cations entered the buried remains as was shown by the multiple energy dispersive X-ray analyses. An increased level of Mg was detected in the carcasses buried in chlorite, whereas Al and Si concentrations were higher in the kaolinite; in both cases, Ca rapidly entered the decaying tissues from marine water. Bacteria underwent similar mineralization as the macroremains and apparently had no direct effect on the mineralization. The results confirmed an important role of dissolved Al ions in preservation of soft-bodied organisms in clay-dominated sediments and explained wide variation in chemical composition of their fossils.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.