The Morrison porphyry Cu–Au–Mo deposit is genetically and spatially related to Eocene plagioclase–hornblende–biotite porphyry intrusions. One porphyry intrusion yielded a U–Pb age of 52.54 ± 1.05 Ma. Mineralization occurs in three stages: (1) vein-type and disseminated chalcopyrite and minor bornite (associated with potassic alteration and gold mineralization); (2) vein-type molybdenite (associated with weak phyllic alteration); and (3) polymetallic sulfide–carbonate veins (dolomite ± quartz–sphalerite–galena–arsenopyrite–chalcopyrite, associated with weak sericite–carbonate alteration). Re–Os dating of molybdenite yielded ages of 52.54 ± 0.22 and 53.06 ± 0.22 Ma, similar to the age of the host porphyry intrusion. Stage 1 vein fluids were predominantly of magmatic origin: Th = 400–526 °C; salinity = 39.8–47.8 wt.% NaCl equiv.; δ18Ofluid = 3.7‰–6.3‰; disseminated chalcopyrite–pyrite δ34SCDT = 0.2‰ and −0.8‰ (CDT, Canyon Diablo Troilite). Stage 2 fluids were a mixture of magmatic and meteoric water: Th = 320–421 °C; salinity = 37.0–43.1 wt.% NaCl equiv.; δ18Ofluid values range from 0.3‰ to 3.4‰; molybdenite and pyrite δ34SCDT = −2.1‰ and −1.2‰. Stage 3 fluids were predominantly of meteoric water origin: Th = 163–218 °C; salinity = 3.1–3.9 wt.% NaCl equiv.; δ18Ofluid = −2.3‰ to 3.9‰ for early vein quartz, and 1.1‰ to 6.1‰ for late vein dolomite; sphalerite and pyrite δ34SCDT = −7.1‰ to −5.6‰. Morrison is interpreted to be a typical porphyry Cu–Au–Mo deposit related to a calc-alkaline to a high-K calc-alkaline diorite to granodiorite intrusive suite, generated in a continental arc in response to early Eocene subduction of the Kula–Farallon plate beneath North America.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.