Abstract
The colluvium and saprolite deposits in the Fran Ali area (Oued Laou, northern Morocco) constitute the main source of raw materials used in traditional pottery. These materials are becoming scarce, however, so alternative materials with the same characteristics are needed; this would ensure the sustainability of pottery activities in the area. The objective of the present study was to examine ten representative samples of clayey materials extracted from the Fran Ali area, i.e. the Ikhadimene, Dar Haddoune, Ihadounene, Aqqbat Ajjoua, and Isalahene sites. The geological materials consist mainly of grayish to brownish phyllites, thin layers of yellowish clay, thicker intervals of reddish-yellow soils ranging in depth from 1 to 4 m, and reddish colluvium soils. The physical properties of these materials were determined using semi-wet sieving and Atterberg limit tests, while chemical, mineralogical, and thermal properties were obtained from the methylene blue test (MBT), the calcimetry test, X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), and thermogravimetric and differential thermal (TGA/DTGA) analysis. The results suggest that the soils contain 21–35% clay, 28–34% silt, and 37–52% sand. They are moderately plastic, with methylene blue adsorption capacities ranging from 3 to 7% and minimal CaCO3 carbonate contents (1–4%). Samples are dominated by SiO2 (51–57%), Al2O3 (17–21%), and Fe2O3 (8–10%). Mineralogically, they are composed of illite (19–27%), chlorite (0–22%), kaolinite (5–9%), and quartz (29–32%). Thermal analysis showed a relatively large mass loss of ~10%. The samples are deemed to be moderately plastic. The results indicate that this raw material is acceptable for pottery fabrication, given the small proportion of irregular interlayer content and its average geotechnical properties. In addition, extraction of the colluvium material is not sustainable because of the relative scarcity of the material. Given the mineralogical similarity between the weathered layers (colluvium) and their parent rock (shales), the present results suggest that the latter is a suitable alternative to the former.