Graphite phase carbon nitride (g-C3N4) is a non-metal semiconductor material with a suitable band gap (2.7 eV) for visible photocatalysis. However, the high cost of relevant synthesis methods and poor adsorption performance have limited its practical applications. The objective of the present study was to mitigate these problems by synthesizing the g-C3N4 in the presence of exfoliated montmorillonite (Mnt). Compared with bulk montmorillonite, the specific surface area of exfoliated two-dimensional Mnt layers was significantly increased. As a result, the light transmittance of the lamella improved noticeably due to the fact that a freshly exposed surface had a large number of active reaction sites, making Mnt an excellent carrier for the photocatalyst g-C3N4. In order to improve the photocatalytic performance of g-C3N4, a series of g-C3N4/Mnt composites was prepared by a wet chemical method using Mnt nanolayers as the matrix. X-ray diffraction, infrared spectroscopy, Brunauer-Emmett-Teller nitrogen adsorption/desorption, transmission electron microscopy, and ultraviolet-visible diffuse reflectance spectroscopy were used to analyze the phase structure, the chemical bonds, the specific surface area and pore sizes, the morphology, and the light absorption characteristics of the composites, respectively. Rhodamine B (RhB) served as the target dye to test the photocatalytic degradation performance of the composites under visible light. According to the findings, the surface of the Mnt nanolayers was densely and uniformly covered by g-C3N4, forming a multi-layered stack structure. An increase of the calcination temperature improved the crystallinity of g-C3N4, leading first to densification and then to relaxation of the layered composite structure. Conversely, the band gap of the composite gradually decreased from 2.56 to 2.4 eV. Furthermore, temperature exposure changed the photocatalytic performance of the composite drastically. While the largest photocatalytic activity was observed at 610°C, it started to decrease with further heating of the composite. The complete degradation of RhB solution occurred after 2 h of visible light irradiation. The findings of the current study provide a scientific basis for the synthesis of a new generation of photocatalysts.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.