Abstract
Iron-pillared clays (Fe-PILCs) were synthesized from hydrolyzed FeCl3 solutions added to NaOH solutions using different synthesis conditions. X-ray diffraction, N2 adsorption-desorption, chemical analysis, thermogravimetric analysis, differential thermal analysis, temperature-programmed desorption of ammonia and temperature-programmed reduction were used to characterize the resulting Fe-pillared clays (Fe-PILCs). A higher degree of pillaring was obtained when the Fe content was adjusted to 60 mmoles of Fe/g of clay. It was observed that higher values of this ratio led to worse acidity and textural characteristics, a consequence of the probable formation of Fe oxides that could not only deposit on the surface but also block the pores formed during the pillaring process. Likewise, it was found that the amount of Fe that can be introduced depended on the OH/Fe ratios. Total surface and micropore area decreased and Fe content increased with increasing pillaring solution concentrations. Finally, all pillared samples prepared here were thermally stable at temperatures up to 400°C.