Clay mineral diagenesis in the Niigata basin is documented by mineralogical and chemical analysis of clay minerals from cuttings from the Shinkumoide SK-1D (SSK-1D) well which is characterized by alternating beds containing dioctahedral and trioctahedral smectite minerals with increasing depth. Dioctahedral smectite shows a progressive increase in illite interstratification with increasing depth. The transition of dioctahedral smectite to interstratified illite-smectite (I-S) is supported chemically by an increase in K and Al and a decrease in Si with increasing depth. In contrast, trioctahedral smectite (saponite) reacts to form a 1:1 interstratified chlorite-smectite (C-S) with increasing burial depth and temperature. Considering the geology and the occurrence of smectite, the SSK-1D smectites probably altered diagenetically from two different parent materials: dioctahedral smectite is derived from clastic sediments and transforms to interstratified illite-smectite, whereas trioctahedral smectite is derived from andesitic pyroclastic rocks and transforms to interstratified chlorite-smectite.

The C-S occurs at the same depth of ~3200 m as the conversion of randomly interstratified (R = 0) I-S to (R = 1) I-S. Furthermore, the depth is compatible with a Tmax temperature of 430–435°C, which indicates the starting temperature for oil generation from organic matter. The temperature of the conversion of (R = 0) I-S to (R = 1) I-S and the start of corrensite formation is estimated at 110–120°C based on the time-temperature model suggested by others. The clay-mineral diagenesis in the SSK-1D further suggests that I-S and C-S can act as geothermometers in clastic and pyroclastic sediments provided that the effect of time is considered.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.