Abstract

This paper deals with the adsorption of an essential oil (EO) on a kaolinite-rich clay and a smectite-rich clay. The two clays were modified with a quaternary alkyl ammonium surfactant to create a lipophilic environment for better adsorption of the EO. The preparation of the clay/EO hybrids avoided the use of a slurry and organic solvent. The selected EO was that of Lippia multiflora. This EO has insecticidal properties. The surfactant was trioctyl methylammonium (TOMA). The modified clays were characterized by X-ray diffraction (XRD) and infrared (IR) spectroscopy. The smectite-rich clay displayed greater adsorption of the L. multiflora EO compared to the kaolinite-rich clay. The interlayer space of the kaolinite-rich clay was not affected by the adsorption of the TOMA and/or EO molecules, which suggests that the adsorption in this clay took place on the external surface. By contrast, a significant increase in the interlayer space of the smectite-rich clay was observed, suggesting that the adsorption process of TOMA and/or EO took place on both the external and internal surfaces. The IR analysis showed that the surfactant loading in the interlayer space of the smectite-rich clay introduces a gauche conformation in the alkyl chains. A formulation mixing this local smectite-rich clay and the L. multiflora EO has potential for the manufacture of new biopesticides.

You do not currently have access to this article.