Abstract

Early Copper Age pottery sherds discovered in a cave within the crystalline dolomites of the Southern Carpathians (Romania) were investigated by polarized light optical microscopy (OM), X-ray powder diffraction (XRPD) and electron microprobe analysis (EMPA) to obtain information on the pottery production in the Copper Age in the territory of present-day Romania. Microscopically, the clayey matrix of the ceramic body is highly birefringent or consists of low-birefringent and isotropic parts mixed together, containing fragments of quartz, muscovite, alkali feldspar, plagioclase, biotite, chlorite, heavy minerals and metamorphic and magmatic rocks, as well as an opaque material. The EMPA data revealed an Fe-rich illite-like matrix and helped to identify the mineral nature of the inclusions. Local pottery production in bonfires or surface clamps is envisaged. Miocene illitic clays may have been used as raw materials, mixed with a small amount of sandy temper. The thermal changes revealed by OM, the modification of the XRPD peaks and the EMPA data suggest firing temperatures of between 800 and 850°C.

You do not currently have access to this article.