Abstract

The purpose of this study was to determine whether a bentonite from the Gafsa deposit (western Tunisia) could be used to remove the Foron Blue 291 (FB) azo dye from wastewater. Batch adsorption and desorption experiments were conducted using untreated and purified bentonite and the influence of contact time, pH, adsorbent mass and temperature of the dye solution on the adsorption of FB was evaluated. Kinetic and isotherm data were fitted using two non-linear kinetic and two non-linear isotherm equations. In addition, the fits were evaluated using the coefficient of determination (R2) and the RMSE. The percentage of dye removal increased with increasing amount of adsorbent until total discolouration was achieved. The adsorption isotherms followed the Langmuir model, with the purified bentonite having a higher adsorption capacity than the raw material due to its higher specific surface area. In addition, the FB molecules were removed from the liquid medium by physical adsorption. Batch desorption experiments were conducted to study the desorption kinetics and the characteristics of the desorption isotherms as well as to quantify the portion of the FB (by mass) that was irreversibly fixed on the solid. Overall, the desorption kinetics were similar to the adsorption kinetics, which indicated that the adsorption-desorption process of azo dye is non-singular; irreversibility occurred that was underlined by an observed thermodynamic index of irreversibility (TII) of 0.69–0.94. The desorption isotherms of the FB depended on the mass of the FB that was initially adsorbed on the bentonite sample, suggesting hysteresis. The amount of irreversibly retained FB was between 46 and 68% of the initial adsorbed mass.

You do not currently have access to this article.