Abstract

Seven commercial cosmetic clays having different colour (white, green, pink and red) available in pharmacies and herbalists’ shops in the Greek market have been examined for their trace element concentrations (Ag, As, Ba, Be, Cd, Ce, Co, Cr, Cs, Cu, Ga, Hf, Hg, La, Mo, Ni, Pb, Rb, Sb, Sc, Se, Sr, Tl, V, Y, Zn and Zr). According to EC Regulation 1223/2009 the presence of As, Be, Cd, Cr, Hg, Ni, P, Pb, Sb, Se, Te, Tl, Zr and their compounds is prohibited in cosmetics. The most abundant trace elements in the white clays were P (330 μg/g), Pb (220 μg/g) and Zr (11 μg/g) and for the green clays were P (1250 μg/g), As (43 μg/g), Cr (31 μg/g), Pb (30 μg/g) and Ni (23 μg/g). Red and pink clays had lower concentrations of these elements than their white and green counterparts. The green clays are three times enriched in As and the kaolinite-rich white clays are nine times enriched in Pb compared to the Average Shale. The main mineral phase in the white clays is either kaolinite or calcite, in green clays smectite, in pink clay kaolinite and talc and in red clays it is vermiculite. The specific activities of 238U, 226Ra, 228Ra, 228Th and 40K were determined by γ-ray spectroscopy. The kaolinite-rich white clays are more enriched in 238U-series radionuclides (238U and 226Ra) than the smectitic green clays. In contrast, the green clays were more enriched in 232Th-series radionuclides (228Ra and 228Th) and 40K than the white clays.

You do not currently have access to this article.