The incomplete miscibility of Al into the ferrihydrite structure has been a recurring issue in understanding the environmental geochemistry of this important oxyhydroxide. During co-precipitation from acidic aqueous solution, ferrihydrite has been observed to accept only up to ∼25 at.% Al without the formation of multi-phasic Al and Fe oxyhydroxides. Using basic chemistry and crystal-chemical relationships we propose here that the saturation limit of Al substitution in the structure of Fe oxyhydroxides is controlled by Al–Al avoidance in a manner that conforms to Pauling’s distortion rule. Employing this hypothesis, we show that the predicted miscibility limit for Al incorporation is 25 at.% in ferrihydrite and 33 at.% in goethite, in agreement with previous observations. These results indicate that the classical f-phase model for ferrihydrite best represents observations. Incorrect assignment of Fe site occupancy and other shortcomings of the akdalaite/tohdite model for ferrihydrite are also discussed.

You do not currently have access to this article.