Early Cretaceous glauconite from the Xiala section, southwestern Tibet, China, was investigated by petrographic microscopy and scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, and electron probe microanalysis (EPMA). The investigations revealed that the glauconite in both sandstones and limestone is highly evolved. The glauconite in sandstone is autochthonous, but in limestone it may be derived from the underlying glauconitic sandstone. Based on analyses of the depositional environments and comparisons of glauconite-bearing strata in Zanda with sequences in adjacent areas, we conclude that the glauconitization at Zanda was probably associated with rising sea levels during the Late Albian, which represent the final separation of the Indian continent from the Australian-Antarctic continent. After the separation of the Indian continent from the Australian-Antarctic continent, cooling of the Indian continent resulted in subsidence and northward subduction of the Indian plate. A gradually rising sea level in Zanda, located along the northern margin of the Indian continent, was the cause of the low sedimentation rate. Continued transgression resulted in the occurrence of the highly evolved glauconite in this area.

You do not currently have access to this article.