Abstract

The purpose of this study was to develop a simple and efficient method for manufacturing porous bioceramics, in which small organic foam spheres were taken as the pore-making reagent and green bodies were made by hot die-casting in moulds. The raw materials (small organic foam spheres, paraffin, oleic acid and β-TCP powder) were mixed into a slurry at 30–120°C and moulded into green bodies using a hot die-casting machine at 30–90°C; the green bodies were then sintered and the porous bioceramics obtained. The main characteristics (structure and size of pores, water permeability, apparent porosity and shrinkage) were tested. The results indicated that the apparent porosity was high and directly proportional to the mass ratio between the small organic foam spheres and the β-TCP powder. The pores connected with each other in three dimensions; the size, distribution of the shapes and structures of the pores were clearly related to the dimensions of the small organic foam spheres. The water permeability was proportional to the hot die-casting pressures and the shapes of the samples could easily be controlled by selecting different moulds. This study indicated that the method can be used to manufacture porous bioceramics with controlled pore structures and different shapes effectively and easily by adding different amounts and sizes of small organic foam spheres, mixing the raw materials evenly, and by selection of the hot die-casting pressure and by the use of different moulds.

You do not currently have access to this article.