Abstract

Halloysite clay minerals are ubiquitous in soils and weathered rocks where they occur in a variety of particle shapes and hydration states. Diversity also characterizes their chemical composition, cation exchange capacity and potassium selectivity. This review summarizes the extensive but scattered literature on halloysite, from its natural occurrence, through its crystal structure, chemical and morphological diversity, to its reactivity toward organic compounds, ions and salts, involving the various methods of differentiating halloysite from kaolinite. No unique test seems to be ideal to distinguish these 1:1 clay minerals, especially in soils. The occurrence of 2:1 phyllosilicate contaminants appears, so far, to provide the best explanation for the high charge and potassium selectivity of halloysite. Yet, hydration properties of the mineral probably play a major role in ion sorption. Clear trends seem to relate particle morphology and structural Fe. However, future work is required to understand the possible mechanisms linking chemical, morphological, hydration and charge properties of halloysite.

You do not currently have access to this article.