The fluorine route is thoroughly investigated for the hydrothermal synthesis of montmorillonite in the Na2O-MgO-Al2O3-SiO2-H2O system. Using the optimal conditions suggested by Reinholdt et al. (2001) for the crystallization of pure montmorillonites with the formula Na2x(Al2(1−x)Mg2x□)Si4O10(OH)2, several parameters (x, Mg content, duration of crystallization, F/Si atomic ratio, pH, nature of counterbalance cation) are varied independently from their ideal values. The products are analysed by various techniques (X-ray diffraction, thermogravimetric analysis-differential thermal analysis, 29Si, 27Al and 19F magic angle spinning-nuclear magnetic resonance). It appears that a pure montmorillonite can only be obtained within a narrow x range (0.10 ≤ x ≤ 0.20). The presence of F in the starting hydrogel and the crystallization time also have significant effects on the purity of the final products. It is shown that a small amount of fluorine is needed for the crystallization of pure montmorillonite phyllosilicates.

You do not currently have access to this article.