In the area of Şile, NW Turkey, Upper Cretaceous calc-alkaline volcanic rocks with compositions ranging from andesite to rhyolite have been recognized. The most widespread rocks of the suite are andesites, which can be grouped into altered and fresh. The oldest altered andesites are the parent rocks for the kaolin deposits of the study area. The Upper Cretaceous volcanic suite consists of spilite, basalt, andesite, trachyandesite, trachyandesitic and hyaloandesitic dacite, rhyolite lavas, tuffs and agglomerates. The highly altered andesites are composed of plagioclase, pyroxene, hornblende, biotite, augite and very fine opaque minerals. During the Turonian, an E–W trending extensional magmatic arc was developed in the Istanbul Tectonic Zone of the oceanic Western Black Sea basin and intermediate volcanic rocks were emplaced, mostly calc-alkaline andesites, suggesting multi-stage magmatism. The significant features of the andesites are: (1) enrichment of LILE (Rb, Ba, K) over HFSE (Zr, Nb, Hf, Ti, Th, U, Y) and LREE (La–Sm), resulting in high Ba/Nb, Th/Nb, Ba/La, K/Ti and Th/La ratios; (2) depletion of LREE over HFSE, MREE and HREE, generating high La/Nb, Ce/Ti, La/Sm and La/Y values; and (3) depletion of Nb, Sr and Ti; all of which are typical of island arc magmatism, with possible back arc signature. The Th-Hf-Ta diagram for tectonomagmatic classification shows that the Şile calc-alkaline rocks are similar to volcanic rocks from the Mariana Arc, the Aeolian Arc of Salina, Italy, the Skaros island in the Aegean Sea and Sardinia’s ignimbrites. Moreover, relatively low La/Th and Ce/Pb ratios suggest that the source region of volcanism was enriched in LILE with respect to REE, indicating crustal contamination during melting.

Highly weathered andesitic rocks, rich in smectite, were transported gradually and deposited in a lacustrine basin, a coal-forming dysaerobic environment, in which they were subject to post-depositional alteration, or in situ kaolinization, to form a kaolin deposit in the presence of humic and fulvic acids. The mobility of major and trace elements and REEs during the progressive kaolinization of andesitic materials has been investigated to reveal the geochemical characteristics of Upper Cretaceous volcanic parent rocks and to explain mineralogical processes in a kaolin deposit as a daughter rock ‘end-product’. Alteration is characterized by the loss of Si, Fe, Ca, Na and K, and by the gain of Al, Ti, Zr and LOI. Moreover, Ho, Er and Yb are immobile, and Hf, Zr and Nb are mobile. Th and U are slightly enriched in clay horizons with respect to the andesitic rocks. In addition, Cr, Ga, Nb and Ta enrichments indicate variable sources of terrigenous sediments and differential mobilities of elements in lake waters rich in organic acids. The anatase concentration increases in the <2 mm size fractions as subspherical particles and these precipitate at acidic conditions (pH & 5) during early diagenesis.

You do not currently have access to this article.