Abstract

The dehydration of hexadecyltrimethylammonium (HDTMA)-exchanged smectites has been studied using X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The basal spacing of hydrated HDTMA-smectites changed with temperature. The 2.5 HDTMA-smectite (i.e. smectite treated with HDTMA equivalent to 2.5 times the CEC) showed a continuous increase in its basal spacing during dehydration up to 200°C, while the 1.2 HDTMA-smectite showed a significant decrease in basal spacing. It is assumed that the less ordered alkyl chains in the wet state in the interlayer region may be rearranged to ordered chains (e.g. all-trans conformation) during sequential dehydration. This results in a decrease in interlayer spacing in the phase with low organic packing density and a flat-lying array (i.e. 1.2 HDTMA-smectite), and a gradual increase in the basal spacing when the chains have a vertical configuration (2.5 HDTMA-smectite).

You do not currently have access to this article.