Abstract

Clay minerals in early Jurassic sequences of shales, siltstones and sandstones deposited in non-marine, transitional and shallow marine environments have been examined by X-ray diffraction, electron microscopy and chemical analysis to study the relationship between clay minerals, their environment of deposition and subsequent diagenetic modifications.

The inherited clay mineral composition of the fine-grained sediments reflects the influence of climate, relief, source rocks and depositional processes. Inhomogeneous clay mineral assemblages, comprising abundant kaolinite and varying proportions of illite, I-S, chlorite and vermiculite, characterize fine-grained sediments from the non-marine and transitional environments. In shallow marine depositional environments clay mineral assemblages are more uniform, dominated by illite+I-S with minor kaolinite and chlorite.

The principal diagenetic process affecting fine-grained sedimentary rocks is the smectite–illite transformation. In sandstones, the authigenic formation of kaolinite, chlorite and illite appears to have been primarily determined by the environment of deposition.

You do not currently have access to this article.