Abstract

The clay mineralogy of Upper Permian–Lower Cretaceous mudstones from East Greenland has been investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and thermal analysis in order to evaluate long-term trends in provenance and palaeoclimate and to detect possible volcanic events. The Upper Permian–Lower Triassic mudstones contain illite, chlorite, vermiculite, kaolinite and illite-smectite (I-S), whereas the Rhaetian–Sinemurian mudstones are dominated by kaolinite. Aalenian–Albian mudstones contain kaolinite and large amounts of I-S with ~80% illite layers. Exceptions are three Kimmeridgian samples, which contain mainly I-S with 30% illite layers, and three Upper Barremian–Lower Aptian samples with large amounts of smectite layers. Discrete clay minerals in the Upper Permian–Jurassic mudstones are largely detrital. The smectite-rich I-S probably reflects episodes of volcanic activity in late Jurassic and late Barremian–early Aptian times. This is the first indication of Mesozoic volcanism from the Mesozoic rift basin of East Greenland. The main sediment source during late Permian–early Cretaceous times was weathered Precambrian and Caledonian crystalline basement. The only possibly climate-induced change is a change from chlorite, illite, vermiculite and kaolinite in Upper Permian–Lower Triassic mudstones to kaolinite and I-S in the Jurassic mudstones and is probably due to an increase in precipitation.

You do not currently have access to this article.