Changes in particle organization and pore-spaces with applied mechanical and hydraulic stresses were followed using TEM, SAXS mercury porosimetry and gas adsorption for two Na-smectites, Laponite and hectorite, with similar structural formulae but different particle sizes. The TEM images show that hectorite has particles larger and more anisotropic than those of Laponite. The particles order perpendicularly to the direction of axial mechanical stress and become disoriented under hydraulic stress. According to the SAXS results, Laponite is composed of 1–3 small layers and hectorite of more compact (10–80 layers) particles. In Laponite, mechanical stress strongly reduces the amount of macropores but does not affect micropores and mesopores; hydraulic stress increases the macropores. In hectorite, the pore-volume is lower than in Laponite. The different techniques used yield complementary results and show the considerable effect of layer dimension on the behaviour and microtexture parameters of smectite submitted to hydromechanical stresses.

You do not currently have access to this article.