Abstract

In the Miller Field, diagenetic quartz abundance, isotopic compositions and salinities of quartz-cementing fluids display a distinct pattern which is related to the structural depth of the reservoir sandstones. Quartz cement volumes increase from the crest of the field (average 6.0±1.5%) towards the flanks of the field (average 13.2±2.1%) and directly reduce reservoir porosity. By integrating petrographic observations with results of fluid inclusion measurements and O isotope analyses of diagenetic quartz, the pattern of quartz cementation is seen to be related to the reservoir filling history. Oil filled the crest of the reservoir first and prevented extensive quartz cementation. At greater depth in the reservoir oil zone, quartz overgrowths continued to precipitate until inhibited by the developing oil column. Oxygen isotope compositions of diagenetic quartz imply that quartz cement continued to precipitate in the water zone of the reservoir up to the present day.

You do not currently have access to this article.