Changes in the molecular structure of a highly ordered kaolinite, intercalated with urea and potassium acetate, have been studied using Raman microscopy. A new Raman band, attributed to the inner surface hydroxyl groups strongly hydrogen bound to the acetate, is observed at 3605 cm (super -1) for the potassium acetate intercalate with the consequential loss of intensity in the bands at 3652, 3670, 3684 and 3693 cm (super -1) . Remarkable changes in intensity of the Raman spectral bands of the low-frequency region of the kaolinite occurred upon intercalation. In particular, the 144 and 935 cm (super -1) bands increased by an order of magnitude and were found to be polarized. These spectroscopic changes provide evidence for the inner surface hydroxyl group-acetate bond being at an angle approaching 90 degrees to the 001 face. Decreases in intensity of the bands at 243, 271 and 336 cm (super -1) were observed. The urea intercalate shows additional Raman bands at 3387, 3408 and 3500 cm-1 which are attributed to N-H vibrations after formation of the urea-kaolinite complex. Changes in the spectra of the inserting molecules were also observed.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not currently have access to this article.