Abstract

A range of allophane samples (atomic Al/Si bulk ratios 1.1-1.9) from Silica Springs, New Zealand, has been characterized by X-ray photoelectron spectroscopy (XPS). Binding energies of Si 2s, Si 2p, Al 2p, O 1s, C 1s, and N 1s electrons, together with the kinetic energies of Al KL 23 L 23 Auger electrons, at or near the surface of allophane aggregates, have been derived. The values for Al, Si and O electrons are similar to those for kaolinite but also to those for some framework silicates (feldspars) having 4-coordinate Al. Values for N electrons suggest that N occurs in organic structures. Comparison of XPS and bulk Al/Si ratios shows an enrichment of Al at or near the surface of allophane aggregates. The same is true for C and N. Extraction with citrate-dithionite-bicarbonate (CDB) reagent leaves the surfaces depleted in Al. The CDB extracts have higher Al/Si ratios than the bulk allophanes. Similarly, CDB treatment reduces the degree of surface enrichment of C and N. Small increases in the binding energies of Si electrons following CDB treatment suggest partial dissolution of the bulk structure though a concomitant removal of a separate phase or species cannot be ruled out. The results may be accounted for in terms of the structure previously suggested for the primary spherules of Silica Springs allophane (Childs et al., 1990) though the composition of the spherules at or near the surface of the allophane aggregates is different from those of the bulk.

First Page Preview

First page PDF preview
You do not currently have access to this article.