Fundamental particles of illite-smectite from bentonites were separated into classes by high-speed centrifugation after infinite osmotic swelling of mixed-layer crystals, achieved by Na-exchange and dispersion in distilled water. In samples free of detrital contamination, the thinnest fundamental particles yield older K-Ar ages than the thicker fundamental particles. This implies that they do not preferentially lose radiogenic 40 Ar due to size, and that the illitization process is a crystal growth mechanism (not nucleation plus growth). As a result, any K-Ar age of fundamental illite particles from bentonites is an integral over longer or shorter periods of time, depending on the thermal history of the rocks. In thick bentonite beds, the measured age difference between the beginning of the illitization process at the contact with the host rocks and the end in the centre of the bed records extremely slow K diffusion in these well compacted rocks. These data explain why measured K-Ar ages of illite-smectite from bentonites are younger than the corresponding age of shale illitization, inferred from the burial history of the basin. The finest technically separable size-fractions of associated shales (<0.02 mu m) yield K-Ar dates greater than the stratigraphic age. This observation points to incomplete recrystallization of detrital illite during burial diagenesis.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not currently have access to this article.