The widespread Early Cretaceous plutons intruding along the southern Great Xing’an Range (SGXR) provide evidence for tectonic evolution of the region. Petrological, geochemical, zircon U–Pb geochronology, and zircon Hf isotopic studies are conducted on intrusions from Bianjiadayuan and Hongling areas. These suites classify as A2-type granites and monzodiorites, respectively. The 138–133 Ma A2-type granites originated from partial melting of continental crustal materials at high temperatures and shallow depths with significant addition of juvenile mafic lower crust sourced from a metasomatized mantle. The 136–134 Ma monzodiorites originated from the partial melting of an enriched mantle that was modified by melts of a previously subducted slab coupled with crustal contamination. The Early Cretaceous magmatism in the SGXR occurred in two periods: ∼145–136 Ma (peak at ∼139 Ma; εHf (t) = 5 to 10) and ∼136–130 Ma (peak at ∼131 Ma; εHf (t) = –10 to 15). The Early Cretaceous granite–monzodiorite suite in the SGXR suggests a bimodal magmatism in an extensional setting. The ∼145–130 Ma magmatism may have been triggered by asthenospheric upwelling induced by the Mongol–Okhotsk oceanic slab breakoff and large-scale lithospheric delamination resulting from post-orogenic extension. The variation of subduction direction of the Paleo-Pacific Ocean likely triggered a change in stress regime at ca. 136 Ma and likely promoted the lithospheric delamination beneath the SGXR resulting in intense magmatism originating from various sources. As such, the Paleo-Pacific Oceanic subduction likely played an important role in the Early Cretaceous magmatism in the SGXR.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.