Tyrannosaurids were the apex predators of Late Cretaceous Laurasia and their status as dominant carnivores has garnered considerable interest since their discovery, both in the popular and scientific realms. As a result, they are well studied and much is known of their anatomy, diversity, growth, and evolution. In contrast, little is known of the earliest stages of tyrannosaurid development. Tyrannosaurid eggs and embryos remain elusive, and juvenile specimens — although known — are rare. Perinatal tyrannosaurid bones and teeth from the Campanian–Maastrichtian of western North America provide the first window into this critical period of the life of a tyrannosaurid. An embryonic dentary (cf. Daspletosaurus) from the Two Medicine Formation of Montana, measuring just 3 cm long, already exhibits distinctive tyrannosaurine characters like a “chin” and a deep Meckelian groove, and reveals the earliest stages of tooth development. When considered together with a remarkably large embryonic ungual from the Horseshoe Canyon Formation of Alberta, minimum hatchling size of tyrannosaurids can be roughly estimated. A perinatal premaxillary tooth from the Horseshoe Canyon Formation likely pertains to Albertosaurus sarcophagus and it shows small denticles on the carinae. This tooth shows that the hallmark characters that distinguish tyrannosaurids from other theropods were present early in life and raises questions about the ontogenetic variability of serrations in premaxillary teeth. Sedimentary and taphonomic similarities in the sites that produced the embryonic bones provide clues to the nesting habits of tyrannosaurids and may help to refine the prospecting search image in the continued quest to discover baby tyrannosaurids.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.