The Shimadong porphyry Mo deposit is located in eastern Yanbian, in the eastern part of the north margin of the North China craton, northeastern China. Here, we present the whole-rock major and trace elements, zircon U–Pb and Hf isotope data, and molybdenite Re–Os data for the Shimadong deposit. The porphyry was emplaced at 163.7 ± 0.9 Ma and the mineralization at 163.1 ± 0.9 Ma, suggesting that the mineralization was associated with the emplacement of the Shimadong porphyritic monzogranite. The porphyritic monzogranite had high SiO2 (70.09–70.55 wt%) and K2O + Na2O (7.98–8.27 wt%) contents and low MgO (0.51–0.53 wt%), TFeO (2.4–2.47 wt%), CaO (2.19–2.26 wt%), and K2O/Na2O (0.8–0.82) contents. The porphyry was rich in large ion lithophile elements Rb, Ba, K, and Sr, depleted in high-field-strength elements Y, Nb, Ta, P, and Ti, without significant Eu anomaly (δEu = 0.86–1.00), and depleted in heavy rare earth elements with light rare earth elements/heavy rare earth elements = 18.25–20.72 and (La/Yb)N = 27.10–34.67. These features are similar to those of adakitic rocks derived from a thickened lower crust. Zircon εHf(t) values for the porphyritic monzogranite ranged from –19.2 to 6.3, and the two-stage Hf model ages (TDM2) were 2421–811 Ma. These data indicate that the primary magma of the Shimadong porphyritic monzogranite was mainly derived from partial melting of the thickened lower crust consisting of juvenile crust and pre-existing crust. Combined with the results of previous studies, our data suggest that the Shimadong porphyry Mo deposit was emplaced along an active continental margin related to the westward subduction of the paleo-Pacific Plate.

You do not currently have access to this article.