The Late Ordovician Pingliang Formation accumulated along the southern margin of the Ordos Basin in China. The convergence of the Yangtze Plate and Sino-Korean Plate led to a trench–arc–basin system during the Middle Ordovician, with a platform- and slope-dominated setting in the east where a graben complicated the overall simple paleogeographical picture, relatively parallel zones of a platform and a slope setting in the middle, and a change from platform to slope to deep marine to a trench setting in the west. This configuration resulted in various types of gravity flow deposits and contourites with different compositions and pathways. The present study focuses on the typical characteristics of contourites in the geological record and the relationships between contour currents and gravity flows. The Pingliang Formation contains eleven lithofacies grouped into five facies associations. These facies associations represent deep sea autochthonous deposits, several types of debrites, turbidites, and contourites, as well as turbidites within which the fine-grained top portion was reworked by a contour current. The various lithofacies are concentrated in different parts of the study area: micritic contourites and debrites are concentrated in the eastern part; debrites, and sandstone and siltstone turbidites are concentrated in the middle part; and calcarenitic turbidites, contourites, and reworked turbidites occur in the western part. The main contour current ran parallel to the contour lines from east to west. Although most of the contour current continually moved westward in the eastern part of the study area, a minor part split off and followed a semicircular pathway through the Fuping Graben; its velocity became reduced here so that micritic contourites were deposited. The velocity of the contour current was increased locally when it entered a confined trough in the western part of the study area. The relatively high energy of the contour current here resulted in calcarenitic contourites. The velocity of the contour current was low where it ran through an open environment, resulting in fine-grained, thin contourites in the middle part of the study area. Large turbidity currents and debris flows occurred here, and their high energy destroyed almost all earlier deposited contourites. This explains why traces of contour currents in the middle part of the study are very scarce, although the east–west-running contour current must have passed through this area.

You do not currently have access to this article.