To test an inference that the New Liskeard–Thornloe scarp (NLTS), Timiskaming graben, Ontario, is a deglacial–postglacial seismo-neotectonic fault, we collected shallow geophysical data along lines 7.2, 0.28, and 0.52 km long, located on three roads crossing the middle portion of the scarp. Data revealed a valley subsurface composed of bedrock (seismic unit a), glaciolacustrine–lacustrine deposits (units b to f), mass movement deposits (units ls 1 to ls 3), wave-worked sediments, mass wasting deposits and (or) artificial fill (unit g), and a minor occurrence of roadfill (unit h). The bedrock surface exhibits only minor undulations in the area underlying the scarp, indicating that the scarp morphology is unrelated to the underlying bedrock topography. Parallel reflectors in glaciolacustrine seismic units b and c conformably overlie the minor bedrock undulations and there is an absence of disturbed or offset zones within the reflectors underlying the scarp. This lack of disturbance or offset provides strong evidence that the scarp is not the product of deglacial–postglacial seismo-neotectonic faulting. The erosive truncation of glaciolacustrine seismic units d and e indicate that the scarp is an erosive feature cut into the glaciolacustrine deposits. It is likely a bluff formed by shoreline erosion, as is consistent with a geomorphic setting previously inundated by a large glacial lake and subsequent recessional lake stages. The non-fault origin for the NLTS limits the northern extent of the hypothesized Timiskaming East Shore Fault to within the Lake Timiskaming basin and, hence, constrains estimates of maximum rupture length.

You do not currently have access to this article.