Broken Hammer is a hybrid Cu–Ni–Platinum Group Element (PGE) footwall deposit located in Archean basement rocks below the impact-induced Sudbury Igneous Complex (SIC), Canada. The deposit consists of massive chalcopyrite veins surrounded by thin epidote, actinolite, and quartz selvedges and low-sulfide, high-PGE mineralization consisting of disseminated chalcopyrite (<5%) and platinum group minerals, associated with Ni-bearing chlorite overprinting alteration patches of epidote, actinolite, and quartz. The veins are grouped into five steeply-dipping sets, striking northeast-, southwest-, southeast-, south-, and east–west, which were emplaced along impact-related fractures that were reactivated multiple times during stabilization of the crater floor. Early reactivation of the fractures created pathways for the migration of hydrothermal fluids from which quartz and chlorite precipitated sealing the fractures. Renewed slip shattered the quartz–chlorite veins into fragments that were incorporated in massive sulfide veins that crystallized from fractionated sulfide melts or from high temperature (400–500 °C) hydrothermal fluids, which migrated outward into the basement rocks from a cooling and crystallizing SIC melt sheet. Hydrothermal fluids syn-genetic with the epidote–actinolite–quartz alteration distributed the PGE into the footwall rocks, or late hydrothermal fluids associated with the Ni-bearing chlorite leached Ni and PGMs from the sulfide veins and redistributed them to form low-sulfide, high-PGE zones in the footwall rocks. During post-impact tectonic events, slip at temperatures below the brittle–ductile transition for chalcopyrite (<200 °C to 250 °C) produced striations along the vein margins. The Broken Hammer deposit exemplifies how Cu–Ni–PGE footwall deposits formed by the reactivation of impact-related fractures that provided conduits for the migration of melts and hydrothermal fluids.

You do not currently have access to this article.