Abstract

The Taku terrane consists of metamorphosed Carboniferous through Triassic marine clastic strata, volcanic rocks, and limestone that occur along the western margin of the Coast Mountains in southeastern Alaska. These rocks are juxtaposed along mid-Cretaceous thrust faults over Jura-Cretaceous basinal strata of the Gravina belt to the west and beneath Proterozoic through Carboniferous metamorphic rocks of the Yukon–Tanana terrane to the east. This paper presents U–Pb ages and Hf isotope analyses of detrital zircons from the Taku terrane, and compares these values with information from the adjacent Wrangellia, Alexander, and northern and southern portions of the Yukon–Tanana terrane (YTTn and YTTs). These comparisons suggest that (i) Carboniferous strata of the Taku terrane were shed mainly from mid-Paleozoic igneous rocks of YTTs, (ii) Permian strata of the Taku terrane were shed from mid-Paleozoic igneous rocks and intraformational Lower Permian volcanic rocks of YTTs as well as Upper Permian volcanic rocks exposed in YTTn, and (iii) Triassic sandstones were shed from mid-Paleozoic igneous rocks of YTTs, whereas conglomerates were shed mainly from mid-Paleozoic arc rocks in YTTn. Hf isotope analyses of Paleozoic zircons record increasing continental input during Silurian–Devonian and Permian phases of magmatism. Similarities in isotopic characteristics, combined with stratigraphic and geochemical information presented by previous workers, suggest that strata of the Taku terrane accumulated on (and partly as lateral equivalents of) rocks of YTTs, and that the combined assemblages formed outboard or along strike of YTTn.

You do not currently have access to this article.