Abstract

John Tuzo Wilson coined the term “plate” in plate tectonics. He is famous for inventing transform boundaries, hot spot tracks, and the Wilson cycle of ocean birth, growth, and decline. Less well remembered is his work in the 1950s on tectonic and radiometric age provinces of the Canadian Shield, as part of which he fathered U/Pb geochronology in Canada. This work gave strong support to the notion of continental growth through accretion of successively younger terranes onto an ancient cratonic core. The present paper reviews how paleomagnetism can trace the motions of continents to test Wilson’s ideas. Continental accretion often involves deep burial of one of the colliding elements through subduction or crustal underplating; such was the case with the Grenville orogen and its subprovinces in their Proterozoic accretion onto the Laurentian craton. The resulting heating and metamorphism erases most pre-collisional magnetic information but adds something new: the possibility of following the post-metamorphic uplift and cooling history, in time and space. The time element is provided by a new form of isotopic geochronology, thermochronometry, which provides dates for specific minerals together with the temperatures at which they became closed to isotopic migration. U/Pb dating of sphene is one method used; another is the 40Ar/39Ar variant of K/Ar dating applied to hornblende, micas, and feldspars, which have a wide range of Ar closure temperatures. The two specific Grenville studies described deal with parallel uplift histories determined by 40Ar/39Ar dating and by magnetics for the accreted terranes of the Central Metasedimentary Belt in Ontario and with the paleomagnetic detection of the post-1240 Ma closing of a small ocean between the Elsevir terrane and Laurentia during the Grenvillian orogeny.

You do not currently have access to this article.