Abstract

Strata of the Campbellton Formation, nearly 1 km-thick and known for its diverse fossil assemblage of early plants, arthropods, and fish, can be divided into six facies associations: (1) restricted lacustrine, (2) marginal lacustrine, (3) near-shore lacustrine, (4) coastal-deltaic, (5) sandy to gravelly alluvial plain, and (6) gravelly proximal alluvial environments. Lacustrine deposits with restricted circulation, due to depth or stagnation, are fine-grained with preserved organic material. The marginal lacustrine association consists of massive siltstone and very fine sandstone, interbedded with conglomerate. The latter are interpreted to have shed from older volcanic units forming the basin walls. The near-shore lacustrine association is characterized by rippled sandstone with microbialites. Alluvial strata include interbedded imbricate to nonimbricate conglomerate, trough cross-stratified sandstone, and barren to plant-bearing siltstone. Rare exposures of thickly bedded imbricate to weakly imbricated cobble–boulder conglomerate with sandy plant-bearing lenses are interpreted as products of hyperconcentrated debris flows. In the western belt, a braided-fluvial system had paleocurrents flowing WNW. Coastal-deltaic deposits west of the fluvial outcrops, containing aquatic vertebrates and invertebrates, had paleocurrents flowing ESE, suggesting a confined body of fresh or brackish water. In lower parts of the eastern belt, lacustrine facies are prevalent, representing a large open lake. Alluvial facies dominate upper parts of the formation, representing an eastward-flowing axial braided river system, with proximal alluvium shed transversely from the basin margins. Although most strata have a volcanic provenance, only one outcrop in the lacustrine beds shows evidence of active volcanism during deposition of the Campbellton Formation.

You do not currently have access to this article.