Abstract

Yukon–Tanana terrane in the southern Campbell Range is composed of rocks that have different metamorphic, exhumation, and structural histories, and that have formed in disparate parts of the Paleozoic Yukon–Tanana volcanic arc. The geological relationships in the southern Campbell Range reveal the tectonic and structural history of the Klatsa metamorphic complex, which represents the remnants of an Early Mississippian subduction zone beneath the Yukon–Tanana arc. The Klatsa metamorphic complex is composed of foliated to massive serpentinite, leucogabbro, amphibolite, and retrogressed eclogitic quartz–muscovite schist with lenses of metabasite. It was structurally juxtaposed on Upper Mississippian to Lower Permian metasedimentary rocks of the White Lake, King Arctic, and Money Creek formations. Regional and local structural and stratigraphic relationships suggest that the Klatsa metamorphic complex is part of the Cleaver Lake thrust sheet, the structurally highest thrust sheet in a north- to northeast-vergent thrust belt that deformed the Yukon–Tanana terrane during the Early Permian. Restoration of the displacement on the Cleaver Lake and underlying thrust faults places the Klatsa metamorphic complex on the western margin of Yukon–Tanana terrane. Late Devonian to Early Mississippian subduction is thought to have occurred along this margin based on previous paleogeographic reconstructions. Generally north- to northeast-vergent D1 to D3 folds deformed the Klatsa metamorphic complex and adjacent metasedimentary rocks. Jurassic(?) D4 imbricate thrust faulting has, in part, reactivated the Cleaver Lake thrust fault contacts and imbricated the Klatsa metamorphic complex with metasedimentary rocks in fault panels that are repeated at a scale of 10 to hundreds of metres.

You do not currently have access to this article.