Abstract

More than 180 regional moment tensor (RMT) solutions for moderate-sized earthquakes (M ≥ 4) are used to examine the contemporary stress regime of western Canada and provide valuable information relating to earthquake hazard analysis. The overall regional stress pattern shows mainly NE–SW-oriented P axes for most of western Canada with local variations. In the northern cordillera, the maximum compressive stress direction (σ1) varies from east–west to north–south to NE–SW from south to north. The stress direction σ1 is consistent with the P axis direction for the largest earthquakes, except in the central and northern Mackenzie Mountains where there is a 16° difference. The Yakutat collision zone shows a steady change in σ1 from east–west in the east to north–south in the west. In the Canada – United States border region, RMT solutions suggest a north–south compressional regime may extend through southern British Columbia and northern Washington to the eastern Cordillera. In the Vancouver Island – Puget Sound region, RMT solutions do not show any obvious pattern in faulting style. However, the stress results are consistent with marginparallel compression in the crust and downdip tension in the subducting slab. Along the Queen Charlotte fault σ1 is oriented ∼45° to the strike of the northern section of the fault, which is dominated by strike-slip faulting, and ∼60° to the strike of the southern section, which is dominated by high-angle thrust faults. The amount of thrust faulting infers a significant amount of convergence between the Pacific and North America plates in the southern Queen Charlotte Islands region.

You do not currently have access to this article.