Abstract

Over sixty new neodymium model ages were determined on orthogneisses from the Kipawa–Mattawa region of the Grenville Province to refine previous Nd isotope mapping work in this area. The combined Nd data sets support a tectonic model involving three major thrust sheets in the Kipawa area, separated by major shear zones. The uppermost sheet is correlated with the Allochthonous Polycyclic Belt, represented in the study area by the Lac Watson nappe, along with two allochthonous klippen. These have Nd model ages < 1.8 Ga, consistent with previous work. Within the underlying Parautochthonous Belt, previous workers identified a second major shear zone, separating rocks with Archean and Proterozoic crystallization ages, respectively. These two thrust sheets also have distinct Nd isotope signatures. The lowermost sheet consists of metamorphosed but otherwise relatively pristine Archean crust with Nd model ages > 2.6 Ga, whereas the overlying sheet consists of magmatically reworked Archean parautochthon with model ages from 1.8–2.6 Ga. A residual magnetic-field map developed from aeromagnetic data was compared with the terrane boundaries determined from isotopic data. The aeromagnetic data accurately reflect the margin of relatively pristine Archean crust in the study area, but this boundary does not correspond to the Allochthon Boundary Thrust. Instead, this boundary resulted from downcutting of the basal shear zone of the allochthon. This caused décollement of the strongly reworked Archean parautochthon to generate a duplex thrust sheet that was transported northwestwards over pristine Archean crust.

You do not currently have access to this article.