The Aberdeen gneiss complex is composed of complexly deformed migmatitic orthogneiss and paragneiss situated within the core of the Vernon antiform, a structure defined by a series of subparallel reflectors visible at upper to middle crustal depths (6–18 km) in seismic reflection data from the Vernon area of the Shuswap metamorphic complex. The Vernon antiform and the Aberdeen gneiss complex lie within the footwall of the gently west dipping (top to the west) Kalamalka Lake shear zone. Migmatitic gneiss exposed within the antiform records evidence (recorded as age domains in complexly zoned zircon grains) of three metamorphic events, occurring at 155–150, 90, and 66–51 Ma. The timing of magmatic events within the antiform includes emplacement of diorite at ∼232 Ma, tonalite at ∼151 Ma, granodiorite at 102 Ma, and monzonite at 52 Ma. Middle to Late Jurassic metamorphism resulted in widespread migmatization. Early Tertiary metamorphism (66–51 Ma) was coeval with the emplacement of granitic rocks and exhumation typical of other areas of the Shuswap metamorphic complex. Highly deformed orthogneiss situated within the hanging wall of the Kalamalka Lake shear zone, comprising the superstructure, was emplaced at ∼171 Ma. Ductile deformation had ceased by 162 Ma. The complex metamorphic and magmatic evolution of the Vernon antiform, which is similar to other areas of the southern Canadian Cordillera including the Nicola horst, Mount Lytton - Eagle plutonic complex, Cariboo Mountains, and Mica Creek area, may reflect episodic tectonic activity at the plate margin.

You do not currently have access to this article.