Abstract

Shear-wave seismic data recorded along four profiles during the SNoRE 97 (1997 Slave – Northern Cordillera Refraction Experiment) refraction – wide-angle reflection experiment in northwestern Canada are analyzed to provide S-wave velocity (Vs) models. These are combined with previous P-wave velocity (Vp) models to produce cross sections of the ratio Vp/Vs for the crust and upper mantle. The Vp/Vs values are related to rock types through comparisons with published laboratory data. The Slave craton has low Vp/Vs values of 1.68–1.72, indicating a predominantly silicic crustal composition. Higher values (1.78) for the Great Bear and eastern Hottah domains of the Wopmay orogen imply a more mafic than average crustal composition. In the western Hottah and Fort Simpson arc, values of Vp/Vs drop to ∼1.69. These low values continue westward for 700 km into the Foreland and Omineca belts of the Cordillera, providing support for the interpretation from coincident seismic reflection studies that much of the crust from east of the Cordilleran deformation front to the Stikinia terrane of the Intermontane Belt consists of quartzose metasedimentary rocks. Stikinia shows values of 1.78–1.73, consistent with its derivation as a volcanic arc terrane. Upper mantle velocity and ratio values beneath the Slave craton indicate an ultramafic peridotitic composition. In the Wopmay orogen, the presence of low Vp/Vs ratios beneath the Hottah – Fort Simpson transition indicates the presence of pyroxenite in the upper mantle. Across the northern Cordillera, low Vp values and a moderate-to-high ratio in the uppermost mantle are consistent with the region’s high heat flow and the possible presence of partial melt.

You do not currently have access to this article.