The La Romaine Supracrustal Belt and the southeastern end of the Wakeham Group in the eastern Grenville Province, Canada, host a series of Pinwarian, 1.50 Ga felsic-dominated volcanic centres metamorphosed at amphibolite to granulite facies during the Grenville orogeny. The centres are interpreted as being related to the emergence of rhyolitic domes in shallow-marine intra-arc basins within the active Pinwarian continental magmatic arc. High-grade metamorphosed hydrothermal alteration zones are intimately associated with pyroclastic deposits composing these volcanic centres and an overlying composite amphibolite unit. They comprise layers of rhyolitic metatuff bearing networks of aluminous nodules and veins, migmatized garnet–biotite–sillimanite gneiss with well-preserved volcanic fragments, and mottled quartz–cordierite gneiss with textures similar to those of vuggy silica facies. Alteration zones of ironstone, carbonate and calc-silicate rocks, garnetite, diopsidite, epidosite, and sulphide mineralization collectively cut across the internal contacts of a composite amphibolite unit inferred to be a mafic lava and sill complex. Lithogeochemical analysis of inferred metamorphosed altered rocks and precursors highlights chemical changes typical of metamorphosed sericitic zones, advanced argillic and silicic zones, and discharge zones characterized by calcic alterations and copper mineralizations. Such zones involve the interaction of hot, very acidic to neutral fluids. Medium to heavy rare-earth elements (REE) and Zr behave as mobile elements in the hydrothermal system as a result of the presence of F-rich fluids. The chemical changes recorded by the various alteration zones share similarities with those observed in high-sulphidation, volcanic hosted massive sulphide deposits occurring in proximal, shallow-marine, volcanic sequences.

You do not currently have access to this article.