Abstract

Four cluster analyses were performed, which recognized 17 conodont communities in the Arenigian (Lower Ordovician) of western Newfoundland. The analyses include 69 598 identifiable conodont specimens recovered from 153 conodont-bearing samples from four stratigraphical sections representing the environmental settings of the platform, upper proximal slope, lower proximal slope, and distal slope. The distribution of conodont communities along the platform to slope environmental gradient shows that sea-level changes simultaneously affected the development and replacement of the conodont communities in the different facies. The pattern of change in conodont communities allows an interpretation of sea-level change that is correlated precisely into the detailed graptolite biozonation. A gradual transgression lasted most of Tetragraptus approximatus Zone time, which was followed by a brief regression; a transgression–regression cycle occurred in the T. akzharensis Zone time; a major transgression caused a highstand during the entire Pendeograptus fruticosus Zone time, which was followed by a major regression in the early Didymograptus bifidus Zone time; Isograptus victoriae lunatus Zone time included repetitive oscillations of sea level; a severe regression in the earliest I. i. victoriae Zone time was represented by the St. George unconformity on the platform and the Bed 12 megaconglomerate on the slope, reaching the lowest sea level during the I. i. maximus Zone time. The Arenigian sea-level curve developed by this study only partly agrees with that from the Baltic region and central Australia based on trilobite communities.

You do not currently have access to this article.