Abstract

The post-Taconian units in the Quebec and northern New Brunswick Appalachians constitute the Gaspé Belt and geological studies have mostly focussed on its eastern Quebec segment. Biostratigraphic data indicate that the succession in southern Quebec is no older than Late Silurian and extends into the Early Devonian. Two distinct stratigraphic assemblages are present. The first assemblage (Saint-Luc, Cranbourne, and Lac Aylmer formations, and Glenbrooke Group) unconformably overlies the Humber and Dunnage zones. The units show a basal alluvial conglomerate that passes progressively to deeper marine facies upsection, which have recorded a post-Late Silurian transgressive event. The second assemblage (Saint-Francis Group and Frontenac Formation) is faulted against either Dunnage units or autochthonous post-Taconian units. It locally unconformably overlies units of the Dunnage Zone; the succession shows progressively deeper marine conditions upsection and also has recorded a post-Late Silurian transgressive event. The biostratigraphic framework suggests that some of the units that were assumed to be vertically stacked are rather laterally equivalent. Independant evidence supports the hypothesis that the Gaspé Belt in southern Quebec formed after the collapse of the Taconian orogen in Late Silurian time. This event is ascribed to the Salinian Orogeny. The framework from southern Quebec is incorporated in a regional scenario. The Gaspé Belt experienced a Pridolian–Lochkovian sea-level rise. In Pragian time, shallower marine conditions were established in southern Quebec, whereas in the Gaspé Peninsula, the shallower conditions only occurred in early Emsian time.

You do not currently have access to this article.