Abstract

The Zarembo Island volcanic rocks and the Burnett Inlet plutonic complex in central southeastern Alaska were investigated to determine if they are genetically related. The Zarembo Island volcanic suite consists of basalt, andesite, and rhyolite lava flows, which exhibit features that suggest simultaneous eruptions of mafic and felsic lavas. Five kilometres to the southeast, the broadly layered Burnett Inlet plutonic complex consists of gabbro–diorite and granite plutons that also show characteristics of contemporaneous mafic and felsic magmatism. These bimodal volcanic and plutonic rocks are similar in age, ranging from 18.5 to 21.5 Ma. Both suites show a gap in silica concentration between 60 and 65 wt.% and have similar major, trace, and rare-earth element composition. Both suites also show igneous layering, either as interlayered basalt and rhyolite flows or as alternating gabbro and granite sheets. Additionally, both groups contain magma mingling and mixing textures, including mafic enclaves in felsic members and quartz xenocrysts rimmed by clinopyroxene in enclaves. These characteristics suggest that the Burnett Inlet intrusive complex and the Zarembo Island volcanic suite represent an eroded, shallow-level plutonic center and its eruptive cover. The style of volcanism and the bimodal nature of magmatism suggest that igneous activity occurred during crustal extension and thinning that accompanied strike-slip tectonic motion in southeastern Alaska during the Tertiary. The volcanic–plutonic rock associations now exposed at the surface indicate that at least 7° of post-20 Ma crustal tilting has affected the region and can help to explain aberrant paleomagnetic poles in mid-Cretaceous intrusions of the Cordillera Coast belt.

You do not currently have access to this article.