The Casco Bay Group in south-central Maine consists of a sequence of Late Cambrian to Early Ordovician interlayered quartzofeldspathic granofels and pelite (Cape Elizabeth Formation) overlain by Early to Late Ordovician back-arc volcanic (Spring Point Formation) and volcanogenic sedimentary rocks (Diamond Island and Scarboro formations). These rocks were tightly folded and subjected to low-pressure amphibolite-facies metamorphism in the Late Silurian. This phase of deformation and metamorphism was followed by the development of a variety of structures consistent with a period of dextral transpression in Middle Devonian – Early Carboniferous time. Previously dated plutons within the sequence range in age from 422–389 Ma and record a period of prolonged intrusive activity in the region. Similarities in age, volcanic rock geochemistry, and lithologic characteristics argue strongly for a correlation between rocks of the Casco Bay Group and those in the Miramichi belt of eastern Maine and northern New Brunswick. The Cape Elizabeth Formation correlates with Late Cambrian to Early Ordovician sediments of the Miramichi Group (Gander Zone) and the Spring Point through Scarboro formations correlate with Early to Late Ordovician back-arc basin volcanics and volcanogenic sediments of the Bathurst Supergroup. The folding and low-pressure metamorphism of the Casco Bay Group is attributed to Late Silurian to Early Devonian terrane convergence and possible lithospheric delamination that would have resulted in a prolonged period of intrusive activity and elevated temperatures at low pressures. Continued convergence and likely plate reconfigurations in the Middle Devonian to Carboniferous led to widespread dextral transpression in the region.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.