A concordant U–Pb zircon age of 569.6 ± 5.3 Ma from synrift volcanic rocks of the Hamill Group, southeastern Canadian Cordillera, provides the first direct U–Pb geochronologic constraint on timing of latest Neoproterozoic rifting along western Laurentia. This age confirms a previous estimate of 575 ± 25 Ma for timing of continental breakup, as derived from the analysis of tectonic subsidence in lower Paleozoic miogeoclinal strata of the North American Cordillera. It also corresponds to the timing of passive margin deposition in the “underlying” Windermere Supergroup of the northern Cordillera, as determined by chemostratigraphic correlations. These timing relationships imply a different breakup history for the northern, as compared to the southern, Cordillera. We propose a model that attempts to explain this paradox of Cordilleran geology. The earlier Neoproterozoic (Windermere-age) rifting event probably records breakup of a continental mass from northern Laurentia followed by development of a passive margin. Accordingly, the Windermere Supergroup of the southern Canadian Cordillera was deposited in an intracontinental rift. The second Neoproterozoic rifting (Hamill–Gog) is interpreted to indicate continental breakup and establishment of a passive margin along western Laurentia.

You do not currently have access to this article.