In the past decade, the Abitibi–Grenville Lithoprobe transect has been the site of numerous geological and geophysical surveys oriented towards understanding the lithospheric evolution of the southeastern Superior and adjoining Grenville provinces. Among the different geophysical methods that have been employed, earthquake seismology provides the widest range of information on the deep structures of the upper mantle. This paper presents a review of studies, both complete and ongoing, involving teleseismic datasets that were collected in 1994 and 1996 along the transect. A complete shear-wave splitting analysis has been performed on the 1994 dataset as part of a comparative study on electrical and seismic anisotropies. Results suggest a correlation between the two anisotropies (supported by xenolith data) and favour a lithospheric origin for the seismic anisotropy. The two anisotropies are believed to represent the fossilized remnants of Archean strain fields in the lithospheric roots of the Canadian Shield. Preliminary splitting results for the 1996 experiment suggest that the S-wave azimuthal anisotropy may be depth dependent and laterally varying. Ongoing receiver function analysis and traveltime inversion studies provide velocity models of the crust and upper mantle beneath the study area. Preliminary receiver function results reveal the presence of an S-velocity increase at ∼90–100 km depth which appears to be laterally continuous over 200 km. Traveltime inversion models indicate the presence of an elongate, low-velocity anomaly beneath the southern portion of the 1996 array which strikes obliquely to major geological structures at the surface (e.g., Grenville Front). Preliminary interpretation relates this anomaly to the same process (e.g., fixed mantle plume, continental rifting) responsible for the emplacement of the Monteregian Hills igneous province.

You do not currently have access to this article.