The Mont Ham Massif (part of the Thetford Mines ophiolite, south Quebec) represents a magmatic sequence made up of tholeiitic and boninitic derived products. A geochemical study confirms the multicomponent mixing models that have been classically advanced for the source of boninites, with slab-derived components added to the main refractory harzburgitic peridotite. An isochron diagram of the boninitic rocks is interpreted as a mixing trend between two components: (i) a light rare earth element (LREE) enriched component (A), interpreted as slab-derived fluid–melts equilibrated with sedimentary materials (εNd = −3, 147Sm/144Nd = 0.140), and (ii) a LREE-depleted component (B) (0.21 < 147Sm/144Nd < 0.23), interpreted as slab-derived fluid–melt equilibrated with recycled Iapetus oceanic crust and equated to the Nd-isotope characteristics of the Iapetus mantle (εNd = 9). A multicomponent source is also necessary to explain the Nd-isotope and trace element composition of the tholeiites, which are explained by the melting of a more fertile, lherzolitic mantle and (or) mid-ocean ridge basalt source (component C), characterized by a large-ion lithophile element depleted pattern and an Iapetus mantle Nd isotopic composition (εNd = 9), mixed in adequate proportions with the two previously infered slab-derived components (A and B). The genesis of the boninites of Mont Ham is not significantly different from those of boninites located in the Pacific. An intraoceanic subduction zone appears to be an appropriate geodynamic environment for the Mont Ham ophiolitic sequence.

You do not currently have access to this article.