Abstract

The 1992 Lithoprobe Abitibi–Grenville Seismic Refraction Experiment was conducted using four profiles across the Grenville and Superior provinces of the southeastern Canadian Shield. Delay-time analysis and tomographic inversion of the data set demonstrate significant lateral and vertical variations in crustal velocities from one terrane to another, with the largest velocity values occurring underneath the Central Gneiss and the Central Metasedimentary belts south of the Grenville Front. The Grenville Front Tectonic Zone is imaged as a southeast-dipping region of anomalous velocity gradients extending to the Moho. The velocity-anomaly maps suggest an Archean crust may extend, horizontally, 140 km beneath the northern Grenville Province. Near-surface velocity anomalies correlate well with the known geology. The most prominent of these is the Sudbury Structure, which is well mapped as a low-velocity basinal structure. The tomography images also suggest underthrusting of the Pontiac and Quetico subprovinces beneath the Abitibi Greenstone Belt. Wide-angle PmP signals, indicate that the Moho varies from a sharp discontinuity south of the Grenville Front to a rather diffuse and flat boundary under the Abitibi Greenstone Belt north of the Grenville Front. A significant crustal thinning near the Grenville Front may indicate post-Grenvillian rebound and (or) the extensional structure of the Ottawa–Bonnechere graben. Crustal thickening resulting from continental collision may explain the tomographic images showing the Moho is 4–5 km deeper south of the Grenville Front.

You do not currently have access to this article.