Abstract

In north-central British Columbia, a belt of upper Paleozoic volcanic and sedimentary rocks lies between Mesozoic arc rocks of Quesnellia and Ancestral North America. These rocks belong to two distinct terranes: the Nina Creek Group of the Slide Mountain terrane and the Lay Range Assemblage of the Quesnel terrane. The Nina Creek Group is composed of Mississippian to Late Permian argillite, chert, and mid-ocean-ridge tholeiitic basalt, formed in an ocean-floor setting. The sedimentary and volcanic rocks, the Mount Howell and Pillow Ridge successions, respectively, form discrete, generally coeval sequences interpreted as facies equivalents that have been interleaved by thrusting. The entire assemblage has been faulted against the Cassiar terrane of the North American miogeocline. West of the Nina Creek Group is the Lay Range Assemblage, correlated with the Harper Ranch subterrane of Quesnellia. It includes a lower division of Mississippian to Early Pennsylvanian sedimentary and volcanic rocks, some with continental affinity, and an upper division of Permian island-arc, basaltic tuffs and lavas containing detrital quartz and zircons of Proterozoic age. Tuffaceous horizons in the Nina Creek Group imply stratigraphic links to a volcanic-arc terrane, which is inferred to be the Lay Range Assemblage. Similarly, gritty horizons in the lower part of the Nina Creek Group suggest links to the paleocontinental margin to the east. It is assumed that the Lay Range Assemblage accumulated on a piece of continental crust that rifted away from ancestral North America in the Late Devonian to Early Mississippian by the westward migration of a west-facing arc. The back-arc extension produced the Slide Mountain marginal basin in which the Nina Creek Group was deposited. Arc volcanism in the Lay Range Assemblage and other members of the Harper Ranch subterrane was episodic rather than continuous, as was ocean-floor volcanism in the marginal basin. The basin probably grew to a width of hundreds rather than thousands of kilometres.

You do not currently have access to this article.