The Dunka Road deposit is one of several Cu – Ni – platinum-group element (PGE) sulfide occurrences found along the northwestern margin of the Duluth Complex, where the host troctolitic rocks are in contact with metasedimentary rocks of the Animikie Group. Magma contamination through assimilation of sulfidic argillaceous country rocks is generally recognized as having played a key role in the genesis of the mineralization. Three main types of disseminated sulfide mineralization have been identified within the Dunka Road deposit: (i) norite-hosted sulfides, (ii) troctolite-hosted sulfides, and (iii) PGE-rich sulfide horizons. The norite-hosted sulfides are found either adjacent to country-rock xenoliths or near the basal contact. The troctolite-hosted sulfides form the bulk of the deposit, and occur throughout the lower 250 m of the intrusion. The PGE-rich sulfide horizons are typically localized directly beneath ultramafic layers. The composition of the different types of sulfide occurrences is modelled using Cu/Pd ratios. It is shown that each type results from the interplay of two main parameters, namely the degree of magma contamination and the silicate magma to sulfide melt ratio (R factor). The norite-hosted sulfides formed at low R factors and high degrees of contamination, as expressed by their PGE-depleted nature, low Se/S ratios, and elevated content in pyrrhotite and arsenide minerals. The troctolite-hosted sulfides formed at moderate R factors and small degrees of contamination, as shown by their moderate PGE content and mantle-like Se/S ratios. Finally, the PGE-rich sulfide horizons are modelled using elevated R factors from an uncontaminated parental magma, which is substantiated by their elevated noble metal content and Se/S ratios, and low pyrrhotite to precious metal sulfide ratio.

You do not currently have access to this article.