A stratigraphic sequence of unconsolidated sediments ranging in age from Late Pliocene to Late Pleistocene is recorded in the Canyon Ranges of the Mackenzie Mountains. Three of the sections (Katherine Creek, Little Bear River, and Inlin Brook) expose bedrock and Tertiary gravel overlain by colluvium and a multiple till sequence of montane origin, separated by paleosols and capped by a till of Laurentide origin. The sections are correlated on the basis of lithology, paleosol development, paleomagnetism, and chlorine dating of surface boulder erratics. A formal stratigraphic nomenclature is proposed for the deposits of this region. The sequence of glacial tills separated by paleosols reflects a long record of glacial–interglacial cycles. Soil properties from the oldest paleosol to modern soil show a general decrease in the degree of soil development, suggesting a progressive deterioration of interglacial climatic conditions. A normal–reverse–normal sequence of remanent magnetization was determined within the stratigraphic succession and assigned to the Gauss–Matuyama–Brunhes chrons, respectively. A Gauss age was assigned to the basal colluvium, an early Matuyama age (including Olduvai) to the first two tills, and a Brunhes age to the last three tills. Laurentide deposits are of Late Wisconsinan age and are restricted to the uppermost part of the stratigraphic succession. Chlorine dates for surface boulders place the all-time limit of the Laurentide Ice Sheet at about 30 ka. The Late Wisconsinan Laurentide Ice Sheet was the only continental ice to reach the Mackenzie and Richardson mountains of the northern Cordillera.

You do not currently have access to this article.